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SYNOPSIS

A method is presented for determining overturning moments in single-
storey structures with flexible foundations subjected to earthquakes. By
means of a transformation of frequency response curves, an equivalent single-
degree-of -freedom model is derived to represent the overturning moment of
the structure. This model is characterized by the fundamental resonance
frequency of the interaction structure and an equivalent damping ratio. Re-
sponse calculations are presented and response spectrum techniques are
described for finding maximum overturning moments. -

The results from a parameter study show that structures with a height-
to-base width ratio greater than 1.0 generally have larger overturning mo-
ments than fixed-based structures with the same resonance frequency and in-
terstorey damping.
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SEISMIC OVERTURNING MOMENTS IN SINGLE-STOREY
STRUCTURES WITH GROUND COMPLIANCE
by

J.H. Rainer

The subject of structure-ground interaction in buildings under seismic
disturbances has lately received considerable attention (1, 2, 3,4, 5, 6). These
studies have concerned themselves exclusively with relative storey displace-
ments in structures that rest on deformable foundations. Although the deter-
mination of interstorey displacements and the resulting forces are of great
significance in the assessment of structural adequacy, the overturning mo-
ments associated with the dynamic forces are also of importance, The over-
turning moments affect the axial loads in the vertical supporting members of
a building, which are then transmitted to the foundation where finally they
have to be resisted by the soil,

If the axial load in the columns is exceeded, compression failures
are possible, as was observed in some buildings after the Caracas 1967 earth-
quake (7). When the load capacity of the soil is exceeded, shear failures in
the foundation materials may result, e.g. Niigata Earthquake 1964 (8). The
behaviour of the foundation material is further complicated by tendency of
some soils to liquefy under dynamic loading. In either case, a clear defini-
tion of the loads imposed by overturning moments is essential to be able to
assess the safety and performance of structure and foundation under earth-
quake motions.

With the consideration of ground-structure interaction under dynamic
loads, the determination of overturning moments becomes a more complex
problem than for a comparable fixed-based structure. To aid in the under -
standing of the phenomenon involved, a relatively simple case is investigated
first, namely that of the single-storey structure. The results presented here,
however, will have direct applicability to structures such as elevated storage
tanks and to structures that can be idealized realistically by the dynamic
model of a simple oscillator founded on a flexible base.

The method of analysis employed here is to derive an equivalent
single-degree-of-freedom (S. D. F.) model for the overturning moment of the
interaction structure, This approach has been developed previously for
studies of relative storey displacements in single-storey interaction struc-
tures under earthquake loadings (9). Among the advantages of using an equiv-
alent 5. D. F. model is the direct applicability of techniques that have been
developed for S. D. F. oscillators, such as numerical integration and the re-
sponse spectrum. Furthermore, extensive parameter studies can be per-
formed without having to rely on the results of lengthy response calculations.

In the following pages are described the interaction model that was
employed in the study, the derivation of an equivalent single-degree-of-
freedom model to represent the overturning moment of the interaction struc-
ture, and numerical results from a parameter study. The use of the
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equivalent S. D. F. model is illustrated with specific response calculations and
with earthquake response spectra. The results are discussed and general
conclusions are presented.

INTERACTION MODEL

The interaction model under study is that shown in Fig.l, which is
identical to the one used in References 3 and 9. Since detailed derivationsare
available in these references, only the main results are presented here.

With the introduction of relative horizontal base displacement and
rocking, the S.D.F. system has become a three-degree-of-freedom system.
For the three generalized coordinates, relative interstorey displacement,
horizontal displacement of structure, and rocking about the base, the equa-
tions of motion are, respectively,

m U, + U + KU =0 (1)
H&ﬁH + mU_+ P = 0 (2)
L% & 12 % mlhiiH + M = 0 (3)
where -2 £
Io = Wy L Wl
=) 2 = he
L m, h®, UH ug + UB + + Um,

and dots above a variable represent differentiation with respect to time. of
these, Eq.3 is of primary interest for the determination of overturning mo-
ments. Under a sinusoidal base disturbance, ugy = welPt the amplification
factors X, Y and Z for relative storey displacement Up,, base displace-
ment Up and the angular rocking component % are given by

UB = We X = ug (X, + iX;) (4)
ipt .

U_ = we'Pt z = ug (Zy + iZ5) (5)

3 = wePty = u, (Y + 0¥ (6)

and the forces between the base and the half-space are
_ ipt  _
P = Poe = ug (X 1) A (7)

M = MeP' = uYB. (8)
o g

-160



For a circular base

A = Gr(KH + 1aCH) (9)
B = Gra(KR + iaCR) (10)
where £
H _
K., = 2 30 Sy * z 2’
H \ / H £ > £ )
(le/ 4 \f2H> < wm/) T ( 2H/
f fZR
- 1R V@ = - —a .
R 2 2 R z .
(flR> % <f2R) (flR> + (f2R>

the K's can be interpreted as S. D. F. stiffness and the C's as damping terms
for the foundation (10) and are plotted in Fig.2. These in turn are a function
of the Bycroft coefficients f, and f, (11). The subscripts H and R refer to

horizontal and rocking displacements, respectively. G = shear modulus of

the ground, r = radius of base, i =.,/-1, a = pr/Vg = non-dimensional
frequency, Vg =

shear wave velocity of ground, p = frequency. Substitution
in the equation of motion, simplification and re-arrangement gives the follow-
ing relationship for the steady state displacement amplification factor:
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which can be expressed more compactly as
. \
i DI = ; 11
LD {d} {fI (Ll=)

In Eq. (11)

P° T a%’ pz  a®fm

CH CR
)\H = 1 )\R 1

2 2 2 K )2

(BK ) (Bn R)

and
- mo B = =i = E)E w?e = L

« T m, T prd n = (r > Yo m,
A = relative inter-storey damping ratio,
p = density of gi‘ound

The transfer function for the system, Tud, due to ground displacement is
obtained by rearranging Eq.11. g

-1
d gy
Ty = {a} = [ {t} 12
o {a D] (12)
The transfer function for ground acceleration may then be obtained as
follows:

d d
Ty * "'.—1'3- Ta ™ o ;% Ty (13)
g (1\p) g P g

where d denotes the generalized displacement vector for the structure,

OVERTURNING MOMENTS

The overturning moment M acting on the elastic half-space as a
result of the dynamic response of the structure is obtained from Eq.3:

_ l" e . o
M o= -nF e nE s mnt ] (14)
Upon substitution of steady-state amplification factor s, Eqgs.4 to 6,

and appropriate structural constants, the transfer function for overturning
moment relative to ground acceleration, T'“‘g M, is given by

. S lta
Tﬁg - mlhﬁg [[1+’4n ]hY+x+z (15)
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For a rigidly based structure, Y = 0, X = 1; thus

M
—Im.— =-[1+ 2]. (16)
g
X,Y, and Z may be computed from Eq. 12, and the addition in Eq. 15 has to
be carried out with due regard to signs and real and imaginary components.
The frequency response curve for the overturning moment of a typical struc-
ture (Structure No.l, Table 1) is presented in Fig. 3 (a).

EQUIVALENT S.D.F. FOR OVERTURNING MOMENTS

The response of a linear dynamical system is completely deter -
mined by its frequency response curve, which represents a plot of the trans-
fer function of the system versus frequency. The transfer function of over-
turning moment due to ground acceleration is given by Eq. 15, which, when
plotted as a function of frequency, results in the frequency response curve
for overturning moments shown in Fig. 3 (a). Also shown in dotted lines, is
the frequency response curve for overturning moments of an S. D. F. system
with the same resonance frequency ( when subjected to ground acceleration

ug.
DERIVATION OF EQUIVALENT S.D.F. MODEL

To set up an equivalent S. D. F. model for overturning moments, it
is necessary to convert the frequency response curve for overturning mo-
ments shown in Fig.3 into that of an S. D. F. system. With reference to
Fig. 3 (b), three conditions are to be satisfied by the equivalent S. D. F. model
and the original interaction system: (1) identical resonance frequency;

(2) agreement of ordinates of the frequency response curves away from res-
onance; and (3) agreement of ordinates of the frequency response curves at
the resonance frequency.

1. Identical Resonance Frequency

Since the resonance frequency of the equivalent S.D. F. model is the
same as the fundamental frequency of the interaction system, standard eigen-
value methods applied to the mathematical model of the interaction system
will yield the required resonance frequency. By eliminating the rows and
columns corresponding to the imaginary terms of the matrix in Eq. 11, the
roots of the resulting determinant are the eigenvalues of the interaction
system. The lowest frequency corresponds to the fundamental, and conse-
quently to the resonance frequency of the equivalent S.D.F. model. Alter-
natively, a numerical search for the lowest resonance peak in the frequency
response curves, using Eq.1l, will also give the resonance frequency of the
equivalent S. D. F. model.

2. Agreement of Ordinates Away From Resonance

For an S.D. F. oscillator the quantity that is usually computed is the
relative displacement between the base and the spring-supported mass. In
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order that spectral techniques and S. D. F. numerical integration methods
may be employed for response calculation of interaction strué¢tures, the
frequency response curve for overturning moments of the interaction
system must be converted into the frequency response curve for relative
displacement of the equivalent S.D. F. system.,

The zero frequency intercept of the frequency response curve for
relative displacement U,,,, obtained by evaluating the transfer function Ty
from Eqs. 11, 12 and 13 at p = 0, corresponds to the displacement result- by
ing from a base input of zero frequency, i.e. a constant acceleration iig= 1.0.
The resulting relative displacement of the S. D. F. system is then

- 1 1

'n= % W ¥t L
On the other hand, the zero frequency intercept for overturning moments is
obtained from Eq. 15, by setting p=0, Y=Z = 0 and X = 1, which then

becomes
M 1.0
mlhiigJ -
p=0

The ordinates of the frequency response curves for overturning moment at
frequencies below resonance are brought to coincide with the ordinates of
an S.D. F. system if the former are multiplied by 1/Q%. As will be ex-
plained later, agreement of ordinates above resonance is not completely
satisfied by this multiplication factor due to differences in phase.

3. Agreement of Ordinates at Resonance

The amplitude of the resonance peak of the equivalent S.D. F. fre-
quency response curve obtained by means of the above multiplication is now
characterized by an equivalent damping ratio.

The damping ratio of an 8. D. F. system can be computed from the
relationship

1
A o= —2? (18)
where § = nondimensional amplification factor of an S. D. F. oscillator at
the resonance frequency (. The frequency response curve of Ty Un of the
equivalent S. D. F. model has to be converted to the nond1mens1on§1 form
Tu Um in order that Eq. 18 may be apphcable Asacorollary to Eq. 13, Ty
be multiplied by the variable p2to give Ty Um_ But at the resonance
frequency, P equals ). Therefore ‘e

T Um = QR T.s Um
ug Ug
p=0Q p=0 (19)
It should also be recalled from preced&ng paragraphs that the constant rﬁulu-
plication factor 1/Q® is applied to Ty ™M to achieve agreement with Ty

of the equivalent S.D. F. model at thg zero frequency intercept. Conseq%lently
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the amplitude £, of the nondimensional amplification factor of the equivalent
S.D. F. model at resonance becomes

s - 0t |3 [m,"], .4

5o = [ 76, -

This means that for the calculation of the equivalent damping ratio X, , the
actual amplitudes of the overturning moment transfer function at resonance,
as given by Eq. 15, can be used in Eq. 18 (II).

(20)

With resonance frequency (, the multiplication factor 1/Q?, and
the equivalent damping ratio A ¢, the frequency response curve of the
equivalent S, D, F. system is completely described. Since all amplitudes of
the frequency response curve for overturning moments have been multiplied
by 1/Q° any response computed with this equivalent S. D. F. model has to be
multiplied by Q? in order to obtain the overturning moment M/m, h.

RESPONSE CALCULATIONS FOR OVERTURNING MOMENTS

Figure 4 shows response calculations for overturning moments for
Structures No.1 and 2 of Table 1. For both interaction systems the over-
turning moment, shown by solid lines, is larger than for a rigidly based
structure of the same natural frequency, as represented by the dotted curve.
The responses obtained for Structure No. 1 from the equivalent S. D. F.
model differ slightly from the ""exact" one obtained by Fast Fourier trans-
form (12) with transfer function of Eq.24for the following reason.

The transfer function for overturning moment, Eq.15, is seen to
be a composite quantity of all three degrees of freedom. Above the
resonance frequency the amplitudes of the frequency response curve for
overturning moment will be diminished by the relative base displacement,
since it has phase opposite to that of rocking and relative displacement {Fig.5).
Consequently, for frequencies above resonance the frequency response
curve of the equivalent S. D. F. model will not have the same proportion of
amplitudes as the overturning moment frequency response curve. Some
difference of response can thus be expected from the equivalent S.D. F.
model as compared to the "exact!" method using the transfer function and
Fourier transform method. Since for most structures the relative base
displacement is small compared to the interstorey and rocking displace-
ments, the error will be small. For Structure No. 1, the discrepancy was
in the order of 6% of the peak response amplitude.

II In reference 9 it has been demonstrated that under certain simplifying
assumptions the equivalent damping )¢ for relative displacement and over-
turning moment are the same.
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MAXIMUM OVERTURNING MOMENT FROM RESPONSE SPECTRA

Determination of the maximum overturning moment under a partic-
ular base motion may be achieveddirectly from the response spectrum for
that particular earthquake. In accordance with the derivation of the equiv-
alent S. D. F. system described above, the following procedure is indicated:

(1) The fundamental resonant frequency, w,, is determined, and the
amplitudes of the overturning moment response curve are multiplied
by l/(.ul2 .

(2) The equivalent damping A is determined after obtaining M/m, h from
an evaluation of Eq. 15 at resonance, or a parameter study such as is
presented later.

(3) Corresponding to the frequency w,, the value of maximum relative
displacement is read from the response spectrum and multiplied by
(1)12 to obtain the value of the ratio for overturning moment, M/mh .

An approximation to the maximum overturning moments of tall
structures is obtained by taking the undamped spectral displacement Sp and
multiplying it by wf to get M/myh; this gives a conservative estimate.

PARAMETER STUDY

Besides the great generality inherent in the method of derivation of
the equivalent S. D. F. model, a parameter study can be conducted for a
wide range of parameters without having to perform lengthy response cal-
culations. The results obtainedarepresented sothatresonancefrequenciesand
equivalent damping can be found for structures having the specific para-
meters considered. In addition it is possible to arrive at some general con-
clusions regarding the behaviour of structures founded on flexible founda-
tions.

The range of structural and foundation parameters considered is
shown in Table 2. Parameter Set A includes elevated structures such as
water tanks; Parameter Set B would include nuclear reactor containment
vessels and other massive structures. It should be pointed out, however,

that not all combinations of parameters presented may representphysically
realizable systems.

PARAMETER SET A

For Parameter Set A of Table 2, when the ratio of fixed-based
frequency to rocking frequency, Wo/W 3, is plotted against the ratio of fixed-
based frequency to the fundamental resonance frequency, w, /wg,, the values
fall between the bounds shown in Fig. 6. The lower curve corresponds to the
theoretical relationship derived by Merritt and Housner (1) for a flexible
structure on a base with a rotational degree of freedom only:
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1
W W 2|2

_0 = 1 + __2_]
s W (21)

For Parameter Set A of Table 2, the variation of the ratio MS M
of peak magnitudes of the interaction system to that of a fixed-based S.D. F.
system with the same natural frequency is shown in Figs.7 and 8. It may
be observed that for the tall narrow-based structures the peak for the inter-
action system is considerably larger than that of a fixed-based structure
with the same natural frequency. Only for high values of ay and relatively
low structures are the overturning moment resonance peaks for interaction
structures smaller than the S.D. F. case.

PARAMETER SET B

Similarly as for Parameter Set A, a plot of the ratios Wo/Wp Versus
w /w, for Parameter Set B of Table 2 gives the curves shown in Fig.9. Again
the relationship for a rocking base is indicated by broken lines. It may be
observed that as the structures become taller, the frequency reduction ap-
proaches that of the flexible structure on a rocking base, Eq. 21.

Ia the study of resonance peak amplitudes, for Parameter Set B,
Table 2, a similar phenomenon as for Parameter Set A is displayed. 1In
Figures10andll for the structures with the larger ratio of height to base
radius h/r, the resonance peaks of the overturning moment exceed those of
the S. D. F. (i.e. the fixed-based S.D. F.), whereas for the low structure the
peaks are smaller than for the S.D.F. Figure 10 shows that the peak over-
turning moment amplitudes for the structure with base mass mg = 100000
1b sec® in., shown by broken lines, are only slightly less than those for m =
400000 1b sec?/in., both top masses m, equal to 400000 lb sec®/in. and all
other parameters being kept constant.

DISCUSSION OF RESULTS

From the results presented in the parameter study it may be ob-
served that the resonance peaks of overturning moments for structures
whose heights exceed the base diameter generally are larger than the reso-
nance peaks of the fixed-based, S.D.F. system. As the frequency response
curves for the interaction structure and the S.D. F. system both have the
same zero frequency intercept, and are almost identical everywhere except
near the resonance frequency, a comparison of resonance peaks then en-
ables one to make qualitative generalizations regarding the response to an
arbitrary input. That is, when the resonance peaks exceed those of the
S.D.F. system, the response of the interaction structure will be larger or
at most equal to that of the S. D. F. system. Another way of interpreting
these results is by way of the damping ratio. A system with a larger reso-
nance peak has a smaller damping ratio, and consequently a larger response
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under random type or steady-state input (III). It may therefore be deduced
from Figs. 7, 8,10 and 11 that for some structures with foundation inter-
action and a height exceeding the base diameter the overturning moment
under earthquake motions will be larger than for a rigidly based S.D. F.
structure with the same natural frequency and interstorey damping.

From results presented and the underlying derivation of the equiv-
alent S. D. F. model, some significant parameters can be identified. These
are: (1) the frequency reduction from w, to w,, (2) the non-dimensional fre-
quency ag = wer/Vg, and (3) the height and top mass of the structure. These
three groups of parameters are not independent, but they provide a conve-
ient set for the presentation and interpretation of results, as well as for their
subsequent use in the response calculations using the equivalent S. D. F. sys-
tem. From Figs. 9 and 10 it may be seen that the amplitude of resonance
peaks as well as the frequency reductions are almost independent of the
magnitude of the base mass.,

The frequency reduction of all interaction systems investigated is
primarily dependent on the ratio of rocking frequency to the fixed-based
natural frequency of the structure, wg /wo, as may be seen from Figs. 6 and 9.
But the rocking frequency in turn is directly proportional to the shear wave
velocity of the ground, V4. From this observation and the results of the
parameter study in Figs. 7, 8,10 and 11, it may be concluded that for reason-
ably tall structures the same amplification of overturning moments for a
structure-foundation system is obtained as longas wy/Vg is constant. Be-
cause of this property, results presented are valid beyond the range of spe-
cific values of w, and Vg used, provided wo/Vg does not exceed its range
considered here.

SUMMARY AND CONCLUSIONS

The method of analysis of the equivalent S. D. F. model has been
applied to an investigation of overturning moments in single-storey structure-
ground interaction systems. The equivalent S.D.F. model is obtained by
matching the frequency response curve for overturning moments with that
of an S.D. F. system and requires the determination of the resonance fre-
quency, a multiplication factor and an equivalent damping ratio, This
method permits an extensive parameter study and the isolation of the signif-
icant parameters for single-storey structures with foundation compliance.
From the results presented, maximum overturning moments under arbi -
trary base motions can then be found by numerical integration or response
spectrum techniques.

III It should be noted that this generalization is not valid for the compari-
son of resonance peaks for relative displacement, since the ordinates
of the frequency response curves of the interaction system and the
S.D.F. away from resonance are not of comparable magnitudes.
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From a parameter study it is found that overturning moments in
single-storey structures with ground compliance and with a height greater
than base diameter generally exceed the corresponding value for a fixed-
based S.D. F. system with the same natural frequency and inter-storey
damping. This amplification effect is greater with larger height to base-
width ratios.

The parameter study and the method of presentation of the results
have indicated that the ratio of shear wave velocity to the natural frequency
of the fixed-based structure is one of the important parameters in the
structure-ground interaction phenomenon.

Although the results presented are limited to a certain class of
relatively simple structures, they indicate that overturning moments should
be given careful consideration in slender structures founded on elastic bases.
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TABLE 1

PARAMETERS FOR SAMPLE CALCULATIONS

Parameter Unit Structure No.l Structure No.2

(a) Structural Paramegters
vy

my 1b sec? /in, 1000 4000
m, 1b sec?/in. 1000 1000
h ft 40 80
2 it 15 15
Vi f.p.s. 300 800
w, rad/sec 10 20
Wy rad/sec 7.59 7.60
X % 2.0 2.0

(b) Equivalent S.D.F. Model for Overturning Moment

w, rad/sec 7.59 7.60
B
e 57.6 57.7
e % 1.39 0.20
TABLE 2

RANGES OF PARAMETERS

Variable | Parameter Set A Parameter Set B
w, 5 to 20 rad/sec 5 to 20 rad/sec
m, 1000 to 4000 1b sec? /in. 100 000 and 400 000 1b sec? /in.
m 1000 1b sec? /in. 100 000 to 400000 ib sec?/in.
h 20 to 80 ft 40 to 160 ft
r 15 and 20 ft 60 £t
x 2 per cent 2 per cent
Vg 300, 500 and 800 £.p. s. 500, 800 and 1600 f.p.s.
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FIGURE 9

REDUCTION IN RESONANCE FREQUENCY FOR INTERACTION SYSTEMS,
PARAMETER SET B
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FIGURE 10

MAGNITUDES OF RESONANCE PEAKS FOR OVERTURNING
MOMENTS, mo-100 000 AND 400 000, my-400 000 LB SEC2/IN,
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FIGURE 11

MAGNITUDES OF RESONANCE PEAKS FOR OVERTURNING
MOMENTS, mj - 100 000, mg * 100 000 AND 200 000 LB SEC2/iN.,
= 2%
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DISCUSSION OF PAPER NO. 10

SEISMIC OVERTURNING MOMENTS IN SINGLE STOREY STRUCTURES WITH GROUND COMPLIANCE

by

J. H. Rainer

Discussion by: M. Novak

The author presents a way in which Reissner's (Bycroft's) frequency
functions f7, fy can be introduced into the analysis of single storey structures
to express the elastic and damping properties of the half-space (soil). This
is a good approach because the half-space is taken into account without in-
creasing the number of degrees of freedom.

The same procedure can be applied to systems with many degrees of freedom,
e.g. Korenev, Baranov, 1964 and the effect of embedment can be also considered
(paper no. 7).

As for quantitative applications to soils, the damping derived from the
half-space should be considered with certain care. Experiments indicate that
the theory tends to overestimate the damping in vertical direction and under-
estimate it with rocking if internal friction is neglected; layering can con-
siderably reduce the geometric damping. Finally, the theory was developed for
steady-state harmonic vibration not for nonstationary random motion as earth-
quakes are.

Reply by: J. H. Rainer

The basic structural model employed in this study has been used previously
by Parmelle and Kobori, among others. The use of an equivalent single-degree-
of-freedom model for overturning moment is thought to be novel, however.

By determining the resonance frequency of the interaction system and an
equivalent damping ratio from the magnitudes of resonance peaks, the response
to non-stationary random motions such as an earthquake can then be found
directly from a response spectrum. The technique presented, therefore, bridges
the gap between the response for purely sinusoidal excitations and those for
non-stationary motions such as earthquakes.

Numerous studies of multi-degree—of-freedom structures have been presented
that incorporate the effects of flexible foundations. These have either been
for sinusoidal excitations or numerical response calculations under random-
type loads. As far as the author is aware, the ability to draw general con—
clusions from results obtained for sinusoidal disturbances which would be ap-
plicable to random-type inputs has not yet been achieved.

It is indeed possible to introduce the appropriate frequency functions

f1 and f5 for any type of foundation behaviour, including the ones presented
by the discusser in paper no. 7. One could also add additional amounts of
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damping to the elastic half-space results to account for small hysteretic
energy loss in the soil. This is achieved by appropriate modifications of
the C curves such as those presented in Figure 2. A limited study of this
nature has been presented in Reference 9.

Question by: E. Varoglu

Could you comment on the reason for choosing a model with circular
foundation?

In ground compliance analysis, the relation between the total force and
the displacement depends upon the assumption about the stress distribution
over the foundation area. To use a uniform stress distribution for a rigid
foundation may not be adequate in obtaining total force, displacement relation
for a rigid foundation.

Reply by: J.H. Rainer

The circular foundation was chosen as merely one example of a frequency
dependent foundation. One could equally well choose a rectangular, square
or other geometric shape as long as the experimental or theoretical complex
stiffness characteristics are available. It should be pointed out that the
results presented are valid for other foundation shapes provided their frequency-
dependent characteristics resemble those given in Figure 2. This is the case
for the square and rectangular foundations treated in Reference 10.

The writer agrees with the discusser that the stress distribution under
the footing affects the stiffness characteristics. The work presented here,
however, does not concern itself directly with this aspect. Rather, a state-
ment of the problem treated might be as follows: given appropriate flexible
foundation properties, what is the structural response of the interaction
system under earthquake-type loadings? The suitability and applicability of
a theoretical model to represent a particular foundation and its associated
soil must then be considered for any specific application. In view of the
results presented in Figs. 6 and 9, small variations in foundation stiffness
should not greatly affect the frequency ratio wj/wy and, as a consequence, the
structural response of the interaction system. :
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